

This article was downloaded by:

On: 30 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Carbon-13 Magnetic Resonance Spectral Studies of Quinoline Derivatives. Assignments of Bridgehead Carbons

Paul A. Claret^a; Alan G. Osborne^a

^a Department of Chemistry, The City University, London, England

To cite this Article Claret, Paul A. and Osborne, Alan G.(1975) 'Carbon-13 Magnetic Resonance Spectral Studies of Quinoline Derivatives. Assignments of Bridgehead Carbons', *Spectroscopy Letters*, 8: 6, 385 — 390

To link to this Article: DOI: 10.1080/00387017508067338

URL: <http://dx.doi.org/10.1080/00387017508067338>

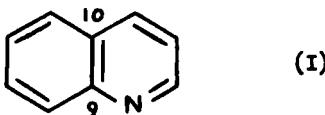
PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

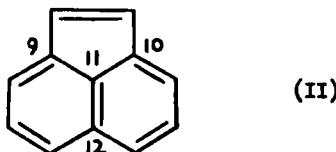
CARBON-13 MAGNETIC RESONANCE SPECTRAL STUDIES OF QUINOLINE
DERIVATIVES. ASSIGNMENTS OF BRIDGEHEAD CARBONS


KEY WORDS : CMR, chemical shifts, quinoline, shielding effects

Paul A. Claret and Alan G. Osborne

Department of Chemistry
The City University
London EC1V 4PB., England

Abstract : Evidence is presented to confirm the assignments of the bridgehead carbon atoms of quinoline. The chemical shifts of C-9 and C-10 in a series of methylquinoline derivatives were determined and their respective assignments deduced from a consideration of shielding effects. The selection of suitable reference compounds is discussed.


The Carbon-13 magnetic resonance spectrum of quinoline (I) has been determined and analysed by Pugmire *et al.*¹ Assignments of the bridgehead carbons C-9 and C-10 were made by comparison with the respective pyridine shieldings. There was a 20.3 p.p.m. difference

between these carbons and the lower field signal was assigned to C-9, since it was α to the nitrogen. No other evidence was presented to confirm the assignments. Subsequent workers^{2,3} have referred to these assignments but have not presented any experimental evidence to support

them. We now wish to report such experimental evidence which confirms the respective assignments for the bridgehead carbons C-9 and C-10 as originally reported by Pugmire *et al.*¹

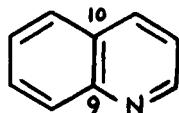
Quaternary carbons may readily be distinguished from ring carbons by the use of off-resonance techniques,^{4a} however, distinction between quaternary carbons, except on the basis of intensity (e.g. C-9/C-10 from C-11 and from C-12 in acenaphthylene (II))⁵ is more difficult.

Such distinction between magnetically non-equivalent carbons of similar intensity has been achieved through use of the relative amplitude of the Nuclear Overhauser Effect,^{5,6} and also from theoretical calculation of their chemical shifts.⁵ Recently the use of deuterium isotope upfield shifts and deuterium-carbon coupling has been introduced.⁷ Although each of these techniques has been applied to the assignment of quaternary carbons in hydrocarbons⁵⁻⁷ as far as we are aware none of these techniques have yet been applied to the quinoline nucleus.

It is well known^{4b} that introduction of a methyl group into an aryl ring causes variations in the ring carbon shieldings. From the chemical shifts obtained it is possible to compile a table of additivity parameters for use in predicting the chemical shifts of multiply substituted methyl derivatives.

The same data may also be used in an alternate manner to assign bridgehead carbon chemical shifts, by consideration of shielding effects. Since the para effect is much larger than those for the ortho and meta positions⁸ the latter two effects may be ignored in the consideration of bridgehead carbon assignments.

We have determined the ¹³C chemical shifts for the bridgehead carbon atoms of a series of methylquinoline derivatives and the results are shown in Table 1.


It is seen that substitution of a methyl group at the para positions to C-9 (i.e. at positions 3 and 6) causes an upfield shift of that carbon. The extent of the shielding effect is smaller than the 3.1 p.p.m. obtained with toluene⁸ but is nevertheless very characteristic; the extent of the effect produced at the quaternary carbon is also similar when substitution occurs in either ring. Similar effects are obtained for substitution at the para positions to C-10 (i.e. at positions 2 and 7). These results therefore confirm the respective assignments of C-9 and C-10 as originally proposed by Pugmire *et al.*¹

In addition to the para shielding effects; ortho disubstitution (as in 2,3- and 3,4-dimethyl- and 2,3,4-trimethylquinoline) caused a slightly smaller effect than monomethyl substitution (see note b in Table 1). 2,3,4-Trisubstitution also caused a greater effect than would be expected for the central singly substituted position (see note c in Table 1). Parallel effects for ortho disubstituted and for 1,2,3-trisubstituted methylbenzene derivatives have been reported previously.^{4b,8} Hence, for unequivocal assignments of bridgehead carbon atoms, monomethyl substituted derivatives should ideally be used.

In order to assess the respective upfield shifts it was found expedient not to use quinoline itself as the standard but to use instead, 4-methyl-quinoline and 8-methylquinoline as the reference compounds for the heterocyclic and carbocyclic rings respectively. In each of these compounds the overall effect of substitution of a methyl group on the shielding of the bridgehead carbons is present, but there is no additional para shielding effect. That these compounds serve as reasonable standards is shown by their respective chemical shifts for C-9 and C-10 which are very similar;

Table 1

^{13}C Chemical shifts for C-9 and C-10 in some
methylquinoline derivatives

Substituted quinoline	Chemical Shift (δ)		Shielding Effect (p.p.m.) (a)	
	C-9	C-10	C-9	C-10
quinoline (ref. 1)	149.1	128.9		
quinoline (ref. 2)	149.3	128.9		
2-Me	147.8	126.3*	+0.1	-1.7
3-Me	146.5*	128.0	-1.2	0.0
4-Me	147.7	128.0	—	—
2,3-Me ₂	146.4*	127.3*	-1.3	-0.7 (b)
2,4-Me ₂	147.5	126.3*	-0.2	-1.7
3,4-Me ₂	146.7*	128.2	-1.0 (b)	+0.2
2,3,4-Me ₃	145.7*	126.9*	-2.0 (c)	-1.1 (b)
8-Me	147.3	128.1	—	—
6,8-Me ₂	146.0*	128.3	-1.3	+0.2
7,8-Me ₂	147.3	126.5*	0.0	-1.6

NOTES Starred results represent a para shielding effect

- (a) Compared to 4-methylquinoline for heterocyclic ring substitution and to 8-methylquinoline for carbocyclic ring substitution
- (b) Smaller effect due to ortho disubstitution
- (c) Larger effect due to central atom of diortho trisubstitution

these shifts are also similar to the chemical shifts of either C-9 or C-10 in other methyl substituted compounds in which there is no para effect for one particular bridgehead carbon atom. (e.g. C-9 in 2-methylquinoline or C-10 in 3-methylquinoline) It is also of interest to note that the chemical shifts of the bridgehead carbons in the two reference compounds show a greater deviation from quinoline for C-9 which is the atom closest to the nitrogen.

The technique described above may also be used to assign bridgehead carbon atoms in other six-membered polycyclic molecules. Thus the data reported by Parker and Roberts⁹ for the chemical shifts of methylindoles could be employed to confirm the assignment of the bridgehead carbons in the indole molecule.

Spectra were determined, for samples dissolved in CDCl_3 , in the presence of TMS, on a Bruker HX90E spectrometer operated in the Fourier Transform mode at 22.63 MHz, with broad band proton decoupling. Spectra were determined by the Physico Chemical Measurements Unit, Harwell to whom we are indebted.

REFERENCES

1. R. J. Pugmire, D. M. Grant, M. J. Robins and R. K. Robins, *J. Amer. Chem. Soc.*, 1969, 91, 6381.
2. P. S. Pregosin, E. W. Randall and A. I. White, *J. Chem. Soc. Perk. Trans. II*, 1972, 1.
3. M. Hirayama and Y. Hanyu, *Bull. Chem. Soc. Japan*, 1973, 46, 2687.
4. J. B. Stothers, "Carbon-13 NMR Spectroscopy", Academic Press, New York, 1972, (a) p.92 ; (b) pp. 94-7.
5. A. J. Jones, T. D. Alger, D. M. Grant and W. M. Litchman, *J. Amer. Chem. Soc.*, 1970, 92, 2386.

6. A. J. Jones, D. M. Grant and K. F. Kuhlmann, *J. Amer. Chem. Soc.*, 1969, 91, 5013.
7. R. H. Martin, J. Morian and N. Defay, *Tetrahedron*, 1974, 30, 179.
8. W. R. Woolfenden and D. M. Grant, *J. Amer. Chem. Soc.*, 1966, 88, 1496.
9. R. G. Parker and J. D. Roberts, *J. Org. Chem.*, 1970, 35, 996.

Received March 18, 1975

Accepted April 7, 1975